
I

A'

NASA Technical Memorandum 89837

I

Automating the Parallel Processing of Fluid
and Structural Dynamics Calculations

(NASA-TB-89837) A U T O B A % / b l G ' I f E &ARALLEL Nc3 7- 19002
IEGCESSING OF F L C I E ALL SP65CIUGAL C Y N A H I C S
C A L C D L A I I C N S (NASA) 11 p C S C L 09B

I

Unclas
G3/61 43831

Dale J . Arpasi and Gary L. Cole
Lewis Research Center
Cleveland, Ohio

Prepared for the
1987 Summer Computer Simulation Conference
sponsored by the Society for Computer Simulation
Montreal, Canada, July 27-30, 1987

7

AUTOMATING THE PARALLEL PROCESSING OF FLUID
AND STRUCTURAL DYNAMICS CALCULATIONS

Dale J. Arpasi and Gary L. Cole
National Aeronautics and Space Administration

Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

The NASA Lewis Research Center is actively
involved in the development of expert system technol-
ogy to assist users in applying parallel processing to
computational fluid and structural dynamic analysis.
The goal of this effort is to eliminate the necessity
for the physical scientist to become a computer scien-
tist in order to effectively use the computer as a
research tool.

g

A

Programing and operating software utilities have
previously been developed to solve svstems of ordinary
nonlinear differential equations on parallel scalar
processors. Current efforts are aimed at extending
these capabilities to systems of partial differential
equations, that describe the complex behavior of
fluids and structures within aerospace propulsion
systems.
ations in the redesign, in particular, the need for
algorithms and software utilities that can automati-
cally identify data flow patterns in the application
program and partition and allocate calculations to
the parallel processors. A library-oriented multi-
processing concept for integrating the hardware and
software functions is described.

This paper presents some important consider-

INTRODUCTION

Reductions in calculation times through parallel
processing can be negated by inefficiencies in program
development and execution. The complexities of data-
.flow detection, code allocation, data transfer con-
trol, computation, and computation synchronization,
complicate the development of efficient parallel pro-
cessing programs. Code development for parallel pro-
cessing requires expertise in data-flow analysis and
in the mechanics of the computing system in order to
show advantage over serial computation and to justify
the costs associated with parallel processing.

the general user who merely wants his program to run
faster. A better approach is to provide an intelli-
gent interface between the user and the parallel pro-
cessing system. Ideally this "expert" software will
automate program development, control program execu-
tion, and assist in managing and analyzing results
through "natural" language instructions from the user.
This approach allows the user to concentrate on the
details of his own discipline, resulting in efficient
and effective use of the parallel processing system.
An added benefit of this approach i s that it promotes
technology transfer by raising the level of man-
machine communication beyond the current FortranIOOS
norm.

It is unrealistic to require this expertise of

The development of expert software to provide
engineering-level access to parallel processing
systems is an on-going effort at NASA Lewis.
development of f irst-generation software for program-

The

minq and operating real-time propulsion simulations
on parallel processors is documented in Arpasi 1986;
Arpasi 1985a; Arpasi 1985b; Cole 1985; Cole 1984.
Some related efforts, sponsored by NASA Lewis are
described in Makoui and Karplus 1983; Feyock and
Collins 1986.
software concepts and designs to produce a highly
automated environment for constructing and utilizing
solvers for fluid and structural dynamic analysis and
for usinq them as elements of large system simulators.
This will require the development of a knowledge base,
relational algorithms, and software utilities to per-
form the following functions:

(1) Converting a differential equation model into
a high-level, serial computatidnal model that lends
itself to parallel processing.

from the serial statement.

Current emphasis is on extending these

(2) Developing a parallel statement of the model

(3) Generatinq executable load modules and exe-
cuting them on the multiprocessing facility in such a
way that they run as fast as possible using a minimum
of resources.

(4) Providing extensive library and documentation
utilities to insure the usefulness of programs and
results.

Work has begun on the design and ivplementation of the
programing and operation utilities (2 and 3 above).
Results of these efforts will define interface
requirements for and guide the development of the
other utilities.

The following sections present some important
considerations regarding the development of the expert
programing and operational software. The importance
of data-flow analysis to detecting parallelism in the
computational model is described. Multidimensional
calculation grids are discussed and a data-flow tech-
nique called propagation vectoring is described as a
way of detecting and controlling the propagation of
calculations over the qrid. Finally, a concept for
integratinq all of the hardware and software tools
into a library-oriented multiprocessinq environment
is presented.

DATA-FLOW CONSIDERATIONS

Understandinq the data-flow in complex, multi-
dimensional simulations is critical to producing an
efficient parallel processinq program.
tion, a technique for data-flow identification, propa-
gation, and packing is discussed.

of equivalence statements, which will be called "ele-
ments," bound together through causal relationships
(each producing one result from any number of argu-

In this sec-

We start by defining a "code unit" to be a number

1

ments).
a code unit

For example, the following can be considered

XI(i)=f 1 [X4(i -1) 3
x2 (i)=f2[X4(i-1) 1
X3(i)=f3[X2(i)]

X4(i)=f4[X2(i)]

x5(i)=f5[xi (i) ,k3(i) ,X4(i)]

where i represents the current calculation, and i-1
the prior calculation of its elements (Xl ... X5). As
shown in Fig. l(a), the order of the calculations is
determined by the argument-result relationships. That
is, an element cannot be computed until the elements
producing its arguments are computed. One must also
take into account the fact that calculation of a code
element requires a specific amount of time. This
time, of course, depends upon the capabilities of the
computer doing the calculation. In the figure, hypo-
thetical calculation times are represented by the
height o f the unshaded area of each rectangle.
areas represent a slot of time in which a calculation
o f an element may occur without delaying the calcula-
tion of subsequent elements. Thus the number of data
flow paths may be minimized by judicious movement and
combining (packing) of elements without increasing the
calculation time of the code unit. Then, the resul-
tant grouping o f elements (paths) may each be assigned
to a processor for parallel calculation. As shown in
Fig. l(a), the calculations for Eq. (1) can be packed
into two parallel paths.

is used to describe a multiprocessor dedicated to a
specific code unit calculation. A dual-processor
system, dedicated to calculating the two parallel
paths in the example can be considered a solver of
the code unit in the ith calculation cycle. The
solver accepts a value for X4(i-1), computes the
values
after the calculation interval (here, the time to
calculate fp, f4, and f5).

compute successive cycles as shown in Fig. l(b).
This approach may be viewed as a do-loop

Shaded

For the following discussion, the term "solver"

Xi(i) ... X5(i) and returns these values

This solver could be used repetitively to

For i=l ... 2 do solver, (2)

assuming that the appropriate data transfers take
place. The calculation time for two cycles is twice
the calculation time of a single cycle.

Figure l(c) shows an alternative two-cycle
solver.
are treated as a single code unit.
paths can be packed into a dual-processor solver as
shown in Fig. l(c) so as to require less calculation
time than the repetitive approach (i.e., f2(i+l)
overlaps fg(i)). It should be noted that this
approach requires that the entire code unit reside on
each processor. These exampies demonstrate that
direct parallelization of a repetitive calculation may
not result in a minimum-time solution. Indeed, it is
often necessary to expand loop calculations into a
large set of equations in order to develop a minimum-
time solver.

In this approach the elements for both cycles
The data-flow

Once a solver has been developed, it can be
replicated. These multiple identical solvers may then

be used to parallelize the repetitive calculation of
the solver's results (e.q., other do loops). The
remainder of this section provides a discussion of
this approach to parallel processing.
culation is viewed as propagation of the solver over
a multidimensional calculdtion qrid (the dimension
corresponding to the arrayness of the solver's vari-
ables). An approach to identifying this propaqation
is presented. Finally the use of control statements
to establish the bounds and boundary values of the
calculation qrid is discussed.

Repetitive cal-

Consider the following example of a three-
dimensional calculation:

where i,j,k are the coordinates of a calculation
qridpoint; X(i,j,k) is the result at the qridooint;
and F is the functional relationship between that
result and the results at other qridpoints. Calcula-
tion and transfer of X(i-l,j,k) enables X(i,j,k) as
does X(i,j,k-1). The calculation of X(i,j,k) is
triggered when it has been enabled by each argument.
The sequencing of gridpoint calculations can be
defined in terms of the "propagation vectors" [1,0,0]
and [0,0,1], which result from the roots of the argu-
ment coordinates:

i-l=O, j=O,k=O and i=O,j=O,k-l=O. (4)

Since there are two propagation vectors for E q . (3),
each gridpoint requires two enablements to trigger
its calculation.
point's coordinates matches the sum of another
triqgered qridpoint's coordinates and one of the
propaqation vectors.

shown in Fig. 2, calculation of points (2,3,3) and
(3,3,2) trigger calculation of point (3,3,3). The
calculation of (3,3,3) would occur in the fifth cal-
culation cycle o f the solver. Once all gridpoints,
which can be calculated at a specific time, have been
identified, and their arguments from past cycle cal-
culations become available, those gridpoints can be
allocated to solvers and the new calculations bequn.
The calculation of the solver (3) will proceed accord-
ing to the two propagation vectors until all 64 grid-
points have been calculated. The propagation vectors
therefore determine the number of gridpoints that can
be calculated each cycle. For the example, these are:
4,8,12,16,12,8,4 (see Fig. 2). Therefore if a pro-
cessor is assigned to each gridpoint which can be cal-
culated in parallel, 16 processors would be required
to calculate the 64 gridpoints in the minimum 7 cal-
culation cycles.
vectorinq, it may be possible to set up the next cycle
calculation in parallel with the current calculation
cycle.
ble runtime tool for governing the utilization of
solver resources.

An enablement occurs when the grid-

For example, in the 4 by 4 by 4 calculation qrid

Through proper use of propagation

Thus propagation vectors can provide a valua-

Control statements are used within programs, or
as operatinq system conwnands, to qovern calculation
of a code unit.
communication with the programming and operation util-
ities. The primary control statements are:

They therefore form the basis for

DO <cu> ;

IF <boolean> THEN DO ccul> ELSE DO <cu2> ;

WHILE <boolean> DO <CUI> ;

c

2

FOR i=l .. n , j = l .. m,... DO <cu> ;

FROM <cu> ;

, h e r e <cu> i s a code u n i t . The s tatement (DO) spe-
c i f i e s o n l y a s i n g l e c a l c u l a t i o n of t h e code u n i t and
t h e r e f o r e t h e c a l c u l a t i o n g r i d i s j u s t a s i n g l e
g r i d p o i n t .

The c o n d i t i o n a l s ta tement (I F) i m p l i e s t h a t t h e
code u n i t s (c u l and cu2) a r e da ta - f l ow independent and
t h e r e f o r e may be computed i n p a r a l l e l - as may be the
code u n i t which produces t h e boolean c o n d i t i o n . The
g r i d aga in i s b u t a s i n g l e p o i n t f o r each code u n i t .

The WHILE statement r e s u l t s i n a one-
d imens iona l c a l c u l a t i o n q r i d o f i n d e f i n i t e l eng th .
The code u n i t s (c u l , and t h e one computing t h e boo l -
ean) a r e r e p e t i t i v e l y c a l c u l a t e d as l o n g as t h e bool -
ean i s t r u e . The code u n i t s a r e c a l c u l a t e d synchron-
o u s l y and may be c a l c u l a t e d i n p a r a l l e l as l o n g as the
r e s u l t s o f t h e f i n a l c a l c u l a t i o n c y c l e o f c u l can be
abor ted .

The FOR statement e s t a b l i s h e s e x p l i c i t bounds
f o r m u l t i d i m e n s i o n a l g r i d s .
a t e s t h e c a l c u l a t i o n d e p i c t e d i n F ig . 2 i s

FOR i=l. . 4 , j=1. . 4 , k = l . . 4 DO

A s ta tement which gener-

X(i , j, k)=F[X(i-1, j, k) ,X(i , j, k - l)] .

The FROM statement i s used i n c o n j u n c t i o n w i t h

(5)

t h e o t h e r c o n t r o l s ta tements t o p r o v i d e endpo in t
(boundary) va lues.
beyond t h e boundar ies o f t h e c a l c u l a t i o n g r i d a r e
o f t e n necessary t o complete c a l c u l a t i o n s w i th in the
g r i d . (Ca lcu la t i . on o f X (l , l , l) r e q u i r e s X(0,l . l)
and X(l, l ,O) i n t h e above example.) These i n i t i a l
and boundary c o n d i t i o n s must be synchronously t rans -
f e r r e d t o t h e c a l c u l a t i o n o f t h e code u n i t each cycle,
as a f u n c t i o n o f t h e t r i g g e r e d coo rd ina tes . They can
be assumed t o r e s u l t f r o m t h e c a l c u l a t i o n of another
code u n i t . F o r example,

The va lues o f p o i n t s immediate ly

DO c c u l > FROM <cu2> (6)

i m p l i e s t h a t cu2 f u r n i s h e s t h e i n i t i a l va lues f o r
t h e c a l c u l a t i o n o f c u l . I n t h i s case, t h e code u n i t s
a r e s t r o n g l y l i n k e d s i n c e t h e p ropaga t ion of c u l
ove r t h e g r i d determines t h e p ropaga t ion o f
t h e r e s u l t s o f cu2 may be d i r e c t f u n c t i o n s o f the
g r i d coo rd ina tes .

cu2, and

MULTIPROCESSING ENVIRONMENT

E x p e r t s o f t w a r e f o r programming and o p e r a t i n g
p a r a l l e l p rocesso rs i s env i s ioned as p a r t o f a d i s -
t r i b u t e d , coopera t i ve , m u l t i p r o c e s s i n g environment f o r
s c i e n t i f i c computing. A p r e l i m i n a r y concept f o r such
an env i ronment i s shown i n F ig . 3. I t c o n s i s t s o f two
m a j o r comput ing systems: The m u l t i p r o c e s s o r f a c i l i t y
and t h e l i b r a r y . The m u l t i p r o c e s s o r f a c i l i t y con ta ins
m u l t i p l e p a r a l l e l processors, some ded ica ted t o the
s o l u t i o n of p a r t i c u l a r codes (e.g., f l u i d s s o l v e r A.
and s t r u c t u r e s s o l v e r B) , and o t h e r s f o r genera l -
purpose comput ing (e.g., f o r use i n d e s i g n i n g o the r
d e d i c a t e d so l ve rs , o r f o r i n t e g r a t i n g these so l ve rs
i n t o 1 arge system a n a l y s i s) . The 1 i b r a r y con ta ins
documentation, predeveloped code, and databases f o r
r e c a l l b y t h e user. Users m igh t i n t e r f a c e t o the
m u l t i p r o c e s s o r th rough pe rsona l computers and user-
d e d i c a t e d p a r a l l e l p rocesso rs c o n t a i n i n g t h e afore-
(mentioned e x p e r t so f tware u t i l i t i e s . The f u n c t i o n s

o f s p e c i f i c u t i l i t i e s a r e f u r t h e r desc r ibed i n t h e
f o l l o w i n g paragraphs.

Exper t Sof tware U t i l i t i e s

The programming u t i l i t y i s used t o a s s i s t t h e
use r i n c r e a t i n g p a r a l l e l p rocess ing tasks. The use r
s p e c i f i e s t h e c a l c u l a t i o n task , w i t h o u t r e q a r d f o r
p a r a l l e l i s m , u s i n q c o n t r o l and equ iva lence s t a t e n e n t j
t o d e s c r i b e t h e c a l c u l a t i o n . The t a s k may u t i l i z e
l i b r a r y c a l l s t o make use o f e s t a b l i s h e d a l g o r i t h m s ,
o r t o i n t e g r a t e any o f t h e f a c i l i t y ' s s o l v e r s i n t o %he
c a l c u l a t i o n . I t i s o o s s i b l e t h a t o t h e r e x p e r t s o f t -
ware c o u l d automate t h e s e l e c t i o n o f a l q o r i t h m s and
s o l v e r s based on a h i g h e r - l e v e l , (d i f f e r e n t i a l equd-
t i o n) s ta tement o f t h e task . I t i s i m p o r t a n t t h a t a
s t r u c t u r e be imposed on t a s k s p e c i f i c a t i o n t o i n s u r e
t h a t s u f f i c i e n t i n f o r m a t i o n be p r o v i d e d f o r da ta - f l ow
ana lys i s , and f o r documentat ion of t h e Drocess. I n
t h e c u r r e n t des ign e f f o r t , t h a t s t r u c t u r e i s b e i q g
based on t h a t desc r ibed i n A rpas i 1955b. w i t h %he
a d d i t i o n o f d imensional data-types, h i g h e r - l e v e l c a l -
c u l a t i o n c o n t r o l s ta tements, and o t h e r enhancements.

The p a r t i t i o n i n g u t i l i t y accepts t h e s t r u c t u r e d
d e f i n i t i o n o f t h e t a s k a lonq w i t h a d e s c r i D t i o n o f thF
m u l t i p r o c e s s o r f a c i l i t y a v a i l a b l e f o r i t s c a l c u l a t i o n .
I t p r o v i d e s any r e q u i r e d l i n k s t o t h e l i b r a r y , does
syn tax and semantic t e s t i n g , and o f f e r s adv i ce on p r g -
qram o p t i m i z a t i o n . Then, u s i n q p r e v i o u s l y es tab l i sh - .
c h a r a c t e r i s t i c s o f t h e m u l t i p r o c e s s o r f a c i l i t y , i t
b reaks t h e h i g h - l e v e l s ta tements i n t o b a s i c opera-
t i o n s , computes t h e i r c a l c u l a t i o n t imes and uses d a t 3 -
f l o w r e l a t i o n s h i p s (r e s u l t i n q f rom t h e k i n d o f
a n a l y s i s desc r ibed i n t h e p r e v i o u s s e c t i o n) t o es tab -
l i s h t h e t a s k elements.

The t r a n s l a t i n g u t i l i t y c o n v e r t s t h e t a s k e l e -
ments i n t o execu tab le code f o r t h e t a r g e t processors.
T h i s code, l i n k a g e i n f o r m a t i o n , arqument t r a n s f e r
maps, i n f o r m a t i o n f r o m t h e p a r t i t i o n i n g u t i l i t y , t h e
sou rce program, and a l l documentation, i s sen t t o t h e
l i b r a r y f o r r u n t i m e re fe rence . A l s o i n c l u d e d i n t h i s
t a s k packet i s a d e s c r i p t i v e database t o e s t a b l i s h
h i g h - l e v e l communication between t h e o p e r a t i o n u t i l i t y
and t h e user .

The o p e r a t i o n u t i l i t assembles t a s k s i n t o p a r a l -
l e l p rocess ing jobs. The'user comnunicates th ro l i gh a
s t r u c t u r e designed t o s i m p l i f y j o b s p e c i f i c a t i o n .
T y p i c a l l y , t h i s w i l l i n v o l v e t h e use o f c o n t r o l s t a t e -
ments and o p e r a t i o n a l commands such as those desc r ibed
i n Co le 1984. The p a r a l l e l p rocess ing j o b i s assem-
b l e d f rom t a s k s c o n t a i n e d i n t h e l i b r a r y , o r f rom
u s i n g a c o n t r o l s ta tement . The c a l c u l a t i o n o f a d e d i -
ca ted s o l v e r i s t r e a t e d as a compu ta t i ona l element.
A l l necessary j o b i n f o r m a t i o n i s s u b v i t t e d t o t h e
f a c i l i t y manager (F i g . 3) . The o p e r a t i o n u t i l i t y pro-
v i d e s f o r i n t e r a c t i v e communication between t h e u s e r
and t h e m u l t i p r o c e s s o r f a c i l i t y manager d u r i n g j o b
execut ion.

The m u l t i p r o c e s s o r f a c i l i t y manager (MFM) con-
t r o l s .iob c a l c u l a t i o n based on t h e c o n t r o l s ta tements.
The MFM f u n c t i o n s a r e shown i n F ig . 4.
t i o n s a r e per formed each c a l c u l a t i o n c y c l e acco rd ing
t o r u l e s e s t a b l i s h e d d u r i n g j o b f o r m u l a t i o n .
se tup f o r t h e n e x t c a l c u l a t i o n c y c l e i s done i n p a r a l -
l e l w i t h t h e c a l c u l a t i o n and t r a n s f e r of r e s u l t s f o r
t h e c u r r e n t c a l c u l a t i o n c y c l e . T h i s se tup i n c l u d e s :
p ropaga t ion and c o n t r o l (en-ablement and t r i g g e r i n g)
t o d e f i n e t h e c a l c u l a t i o n s r e q u i r e d i n t h e n e x t c y c l e ;
f o l l o w e d b y t h e g e n e r a t i o n o f any boundary va lues
needed, and i n p a r a l l e l , any p a r t i t i o n i n g and p d c k i i g

These func-

The

3

of next cycle calculations which may be required.
This, in turn, is followed by the development of load
modules and allocation of these modules to the pro-
cessors to be used in the next cycle.

Each control processor in the MFM has a number
o f service (e.g., calculation) processors assiqned to
its domain. Allocation is made from this domain to
promote parallelism.
a control processor if it is allocated a control
statement. Thus job execution proceeds on a tree-
growth basis. Results are passed down the tree as
specified by the data transfer maps, until the final
results reach the facility manager. They are then
transferred back to the user via the operation
utility.

Any service processor may become

The results, an executable session nistory, and
other appropriate documentation are sent from the
operating utility to the library for future reference.

CONCLUDING REMARKS

A concept for a library-oriented multiprocessor
environment for computational fluid and structural
dynamics analysis has been presented. This concept
depends on the development of expert software utili-
ties that will automate the programming and operating
of parallel processors, eliminating the need for the
user to "think parallel." The feasibility of such
utilities has previously been demonstrated for paral-
lel processing of ordinary differential equations.
Current efforts are aimed at extending those concepts
and designs to the more general case of multidimen-
sional, partial differential equations. O f course,
the concepts presented are merely an outline of a
general approach to developing the proposed
multiprocessing environment. As specific software
utilities are designed and tested, a clearer picture
of the overall environment should emerge leading to
the development and demonstration of a prototype

system.
required by the expert software utilities, particu-
larly at runtime, may offset any reduction in time
qained by the parallel processing. Careful attention
must be qiven to both software and hardware design to
avoid this.

It is recoqnized that the overhead time

REFERENCES

1. Arpasi, D.J. and Milner, Edward J.: Partitioning
and Packing Mathematical Simulation Models for
Calculation on Parallel Computers. NASA TM-87170,
1986.

2. Arpasi, D.J.: RTMPL - A Structured Proqrainming
and Documentation Utility for Real-Time Multi-
processor Simulations. NASA TM-83608, 1985.

3 . Aroasi. Dale.: Real-Time Multiorocessor Proaram-
ming Language, (RTMPL) - Users Manual.
TP-2422, 1985.

NASA-

4. Cole, G.L.: Operating System for a Real-Time
Multiprocessor Propulsion System Simulator. NASA
TM-83605, 1985.

5. Cole, G.L.: Operating System for a Real-Time
Multiprocessor Propulsion System Simulator - Users
Manual. NASA TP-2426, 1984.

6. Makoui, A. and Karplus, W.J.: Data Flow Methods
for Dynamic System Simulation: A CSSL-IV Micro-
computer Network Interface. Proceedinas of the
1983 Summer Computer Simulation Conference, VOI .
1, DP. 376-332.

7. Feyock, Stefan and Collins, Robert W.: A High-
Order Language for a System of Closely Coupled
Processing Elements. Final Report NASA Grant
NAG-3-232, 1986.

a

1 I
0 -
CL*
CL

I f I-------- 1
I I

7 M + +

S I 2 . >

I [_N(=lI j I
I

LL
0

- .-
v
a

5

f”
W
1
V >
V

I
I-
L

W
v)

%

~

m

I-
v)
@= I

LL

I.

.-
A

a

m

N

c

6

FLU I D S
(SOLVER B)

0 0 0

L IBRAR IAN

STRUCTURES
(SOLVER B)

+, * 0 0 0

FLU IDS
(SOLVER' A)

FIGURE 3. - CONCEPTUAL MULTIPROCESSING ENVIRONMENT.

0 0 0
STRUCTURES G-P SOLVER
(SOLVER A) #1 .

7

CODE U N I T
CONTAINING
THE CONTROL
STATEMENT

ARGUMENTS c > B U I L D LOAD
MODULES AND ,

ALLOCATE 2-L
DETERMI NE
BOUNDARY

VALUES

PART I T I ON
AND PACK

PROPAGATION

CONTROL

CALCULATE
WITH

ASYNC
TRANSFER

ti TRANSFER

RESULTS

FIGURE 4 . - CALCULATION CONTROL FUNCTIONS.

8

I 1. Report No.

NASA TM-89837
4. Title and Subtitle

12. Government Accession No.

5. Report Date

I 3. Recipient's Catalog No.

9. Performing Organization Name and Address

Nat iona l Aeronautics and Space Admin is t ra t ion
Lewis Research Center
Cleveland, Ohio 44135

12. Sponsoring Agency Name and Address

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

Automating the P a r a l l e l Processing o f F lu id and
S t r u c t u r a l Dynamics Ca lcu la t ions

17. Key words (Suggested by Author@))

505-62-21

18. Distribution Statement

I 8. Performing Organization Report No. I 7. Author(s)

L 9

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of pages 22. Price'

Unc lass i f i ed Unc lass i f i ed 9 A02

Dale J . Arpasl and Gary L. Cole

Nat iona l Aeronautics and Space Admin is t ra t ion
Washington, D.C. 20546

14. Sponsoring Agency Code 1
I

15. Supplementary Notes

Prepared f o r t he 1987 Summer Computer Simulat ion Conference sponsored by the
Society f o r Computer S imulat ion, Montreal, Canada, Ju l y 27-30, 1987.

16. Abstract

The NASA Lewis Research Center i s a c t i v e l y invo lved i n the development o f e x p e r t
system technology t o a s s i s t users i n apply ing p a r a l l e l processing t o computa-
t i o n a l f l u i d and s t r u c t u r a l dynamic analys is . The goal o f t h i s e f f o r t i s t o
e l im ina te the necess i ty f o r the phys ica l s c i e n t i s t t o become a computer s c i e n t i s t
i n order t o e f f e c t i v e l y use the computer as a research t o o l . Programing and
opera t ing sof tware u t i l i t i e s have prev ious ly been developed t o so lve systems o f
o rd inary non l inear d i f f e r e n t i a l equations on p a r a l l e l sca la r processors. Current
e f f o r t s a re aimed a t extending t h e s e c a p a b i l i t i e s t o systems o f p a r t i a l d i f f e r e n -
t i a l equations, t h a t descr ibe the complex behavior o f f l u i d s and s t ruc tu res
w i t h i n aerospace propu ls ion systems. l h i s paper presents some impor tant con-
s ide ra t i ons i n the redesign, i n p a r t i c u l a r , the need f o r a lgor i thms and software
u t i l i t i e s t h a t can au tomat ica l l y i d e n t i f y data f l o w pa t te rns i n the a p p l i c a t i o n
program and p a r t i t i o n and a l l o c a t e ca l cu la t i ons t o the p a r a l l e l processors. A
l i b r a r y - o r i e n t e d mul t ip rocess ing concept f o r i n t e g r a t i n g the hardware and s o f t -
ware func t ions i s descr ibed.

P a r a l l e l processlng
S imula t ion (d i g i t a l)

Unc lass i f i ed - un l im i ted
STAR Category 61

